A Review of Feedforward Control Approaches in Nanopositioning for High-Speed SPM
نویسندگان
چکیده
Control can enable high-bandwidth nanopositioning needed to increase the operating speed of scanning probe microscopes (SPMs). High-speed SPMs can substantially impact the throughput of a wide range of emerging nanosciences and nanotechnologies. In particular, inversion-based control can find the feedforward input needed to account for the positioning dynamics and, thus, achieve the required precision and bandwidth. This article reviews inversion-based feedforward approaches used for high-speed SPMs such as optimal inversion that accounts for model uncertainty and inversion-based iterative control for repetitive applications. The article establishes connections to other existing methods such as zero-phase-error-tracking feedforward and robust feedforward. Additionally, the article reviews the use of feedforward in emerging applications such as SPM-based nanoscale combinatorial-science studies, image-based control for subnanometer-scale studies, and imaging of large soft biosamples with SPMs. DOI: 10.1115/1.4000158
منابع مشابه
Review of Feedforward Approaches for Nano Precision Positioning in High Speed SPM Operation
This article reviews developments in feedforward control for Scanning Probe Microscopes (SPMs), which are key enabling tools in nanotechnologies. Feedforward control aids in precision positioning (at the nano scale) needed to achieve the current research goal of increasing SPM’s operating speed.
متن کاملDual-stage repetitive control with Prandtl–Ishlinskii hysteresis inversion for piezo-based nanopositioning
The positioning performance of piezo-based nanopositioning systems is limited by dynamic and hysteresis effects in the piezoactuator. Herein, a high-performance, dual-stage repetitive controller (dual-RC) with a feedforward hysteresis compensator is proposed for tracking periodic trajectories, such as the scanning-type motion, in nanopositioning systems. Firstly, a discrete-time dual-RC is crea...
متن کاملInvited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues.
Recent interest in high-speed scanning probe microscopy for high-throughput applications including video-rate atomic force microscopy and probe-based nanofabrication has sparked attention on the development of high-bandwidth flexure-guided nanopositioning systems (nanopositioners). Such nanopositioners are designed to move samples with sub-nanometer resolution with positioning bandwidth in the ...
متن کاملNanopositioning for storage applications
In nanotechnology applications, nanopositioning, i.e., nanometer-scale precision control at dimensions of less than 100 nm, plays a central role. One can view nanopositioners as precision mechatronics systems aiming at moving objects over a certain distance with a resolution that could be as low as a fraction of an Ångström. Actuation, position sensing and feedback control are the key component...
متن کاملHigh-speed Serial-kinematic Spm Scanner: Design and Drive Considerations
This paper describes the design of a flexure-guided, two-axis nanopositioner (scanner) driven by piezoelectric stack actuators. The scanner is specifically designed for high-speed scanning probe microscopy (SPM) applications, such as atomic force microscopy (AFM). A high-speed AFM scanner is an essential component for acquiring high-resolution, three-dimensional, time-lapse images of fast proce...
متن کامل